Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biomol Struct Dyn ; : 1-14, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-2283311

ABSTRACT

Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.

2.
Int J Surg ; 104: 106818, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2061278

ABSTRACT

Once the World Health Organization (WHO) declared the COVID-19 (Coronavirus Infectious Disease-19) outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Strategies that must be investigated such as expanding testing capabilities, developing effective medicines, as well as developing safe and effective vaccines for COVID-19 disease that produce long-lasting immunity to human system. Now-a-days, bio-sensing, medication delivery, imaging, and antimicrobial treatment are just a few of the medical applications for nanoparticles (NPs). Since the early 1990s, nanoparticle drug delivery methods have been employed in clinical trials. Since then, the discipline of nanomedicine has evolved in tandem with expanding technological demands to better medicinal delivery. Newer generations of NPs have emerged in recent decades that are capable of performing additional delivery tasks, allowing for therapy via novel therapeutic modalities. Many of these next generation NPs and associated products have entered clinical trials and have been approved for diverse indications in the present clinical environment. For systemic applications, NPs or nanomedicine-based drug delivery systems have substantial benefits over their non-formulated and free drug counterparts. Nanoparticle systems, for example, are capable of delivering medicines and treating parts of the body that are inaccessible to existing delivery systems. As a result, NPs medication delivery is one of the most studied preclinical and clinical systems. NPs-based vaccines delivering SARS-CoV-2 antigens will play an increasingly important role in prolonging or improving COVID-19 vaccination outcomes. This review provides insights about employing NPs-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency. This article also exhibits their capability and efficacy, and highlighting the future aspects and challenges on nanoparticle products in clinical trials of COVID-19.


Subject(s)
COVID-19 , Nanoparticles , COVID-19/therapy , COVID-19 Vaccines , Clinical Trials as Topic , Humans , Nanoparticles/therapeutic use
3.
Saudi Pharm J ; 29(2): 173-187, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1056974

ABSTRACT

Coronaviruses are non-segmented and single stranded positive-sense RNA (+ssRNA) viruses. To date, 06 human coronaviruses (HCoVs) are reported; α-CoVs (HCoVs-NL63 and HCoVs-229E) and ß-CoVs (HCoVs-OC43, HCoVs-HKU1, SARS-CoV, MERS-CoV). While, novel coronavirus (SARS-CoV-2) is the most recent member. The genome sequence of SARS-CoV-2 is 82% similar to SARS-COV-1. The compelling evidences link the progression of viral infection of SARS-CoV-2 with excessive inflammation as a result of the exaggerated immune response and elevated production of "immunocytokines" resulting in cytokine storm (CS); followed by a series of events, like acute organ damage, acute respiratory distress syndrome (ARDS) as well as death. Hence attempts to reduce cytokine storm are now being considered as a new paradigm shift in the clinical management of SARS-CoV-2. Tocilizumab (IL-6 blocker), Baricitinib (JAKs and AAK1 inhibitor), TNFα inhibitors (Infliximab, Adalimumab, Certolizumab) are currently being evaluated for possible block of the CS. Hence, rationalizing anti-inflammatory therapeutics would be the most judicious approach for significant reduction in COVID-19 mortality. In order to elucidate optimized and rationaled use of different therapeutics in COVID-19, we collated latest available information from emerging scientific evidences, integrated previous attempts as well as clinical successes, and various adopted approaches to mitigate past outbreaks with of SARS-CoV and MERS CoV.

4.
Curr Pharm Des ; 27(13): 1564-1578, 2021.
Article in English | MEDLINE | ID: covidwho-955334

ABSTRACT

Cannabis sativa is a well-known plant that has been recognized for its benefits since ancient times by several medicinal systems, including those of China, India, Greece, and Egypt. Although C. sativa is one of the most investigated medicinal plants in the world, it faces some of the greatest controversies surrounding its legalization and use as a medication. C. sativa contains several hundred phytoconstituents, including the infamous "cannabinoids". It is necessary to properly understand the medicinal importance of these phytochemicals and spread awareness among the countries where cannabis is still facing legal obstacles. The current review focuses on the most recent literature pertaining to various applications of cannabinoids, with a special focus on the medicinal aspect of these phytochemicals. Peer-reviewed articles focusing on the importance of cannabis and cannabinoids are the target of this review. Articles were selected based on the relevance to the general scope of the work, i.e., application of cannabinoids. Cannabinoids can truly be regarded as wonder drugs, considering their immense diversity of usage. Unfortunately, however, many of the mares have never been researched biologically or pharmacologically due to their low yield in the plant. However, the approval of some cannabinoids by the FDA (along with other recognized national medical health systems) has opened the horizon for the use of these natural drugs in medicines such as Epidiolex® (cannabidiol, used for the treatment of severe forms of epilepsy) and Sativex®(Δ9-tetrahydrocannabinol and cannabidiol, used for the treatment of spasticity caused by multiple sclerosis). Many pharmacological properties of C. sativa are attributed to cannabidiol (CBD), a non-psychoactive component, along with Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive component. This review addresses the most important applications or current utilization of cannabinoids in a variety of treatments such as chronic pain, cancer, emesis, anorexia, irritable bowel syndrome, communicable diseases, glaucoma, and central nervous system disorders. The biosynthetic pathway of cannabinoids is also discussed. In short, cannabis has a myriad of bioactive compounds that have the potential to increase the list of approved cannabinoids suitable for therapy.


Subject(s)
COVID-19 , Cannabidiol , Cannabinoids , Cannabis , Animals , China , Dronabinol , Female , Greece , Horses , Humans , SARS-CoV-2
5.
J Adv Res ; 30: 133-145, 2021 05.
Article in English | MEDLINE | ID: covidwho-950741

ABSTRACT

Background: Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection. Aim of review: We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections. Key scientific concepts of review: miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/ß) signalling cascade or upregulation of the IFN-α/ß production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.


Subject(s)
COVID-19/immunology , Immunity/genetics , MicroRNAs/immunology , RNA, Viral/immunology , SARS-CoV-2/genetics , Gene Silencing/immunology , Humans , Interferons/immunology , Signal Transduction/immunology , Up-Regulation/immunology , Virus Diseases/immunology , Virus Replication/immunology
6.
Int J Environ Res Public Health ; 17(21)2020 11 04.
Article in English | MEDLINE | ID: covidwho-909203

ABSTRACT

Coronavirus disease 2019 (COVID-19), which reported in an outbreak in 2019 in Wuhan, Hubei province, China, is caused by the SARS-CoV-2 virus. The virus belongs to the beta-coronavirus class, along with the Middle East Respiratory Syndrome coronavirus and Severe Acute Respiratory Syndrome coronavirus. Interestingly, the virus binds with angiotensin-converting enzyme-2 found in host cells, through the spike (S) protein that exists on its surface. This binding causes the entry of the virus into cells of the host organism. The actual mechanism used by the COVID-19 virus to induce disease is still speculative. A total of 44,322,504 cases, a 1,173,189 death toll and 32,486,703 recovery cases have been reported in 217 countries globally as of 28 October 2020. Symptoms from the infection of the virus include chest pain, fever, fatigue, nausea, and others. Acute respiratory stress syndrome, arrhythmia, and shock are some of the chronic manifestations recorded in severe COVID-19. Transmission is majorly by individual-to-individual through coughing, sneezing, etc. The lack of knowledge regarding the mechanism of and immune response to the virus has posed a challenge in the development of a novel drug and vaccine. Currently, treatment of the disease involves the use of anti-viral medications such as lopinavir, remdesivir, and other drugs. These drugs show some efficacy in the management of COVID-19. Studies are still on-going for the development of an ideal and novel drug for treatment. In terms of natural product intervention, Traditional Chinese Medicines (TCM) have been employed to alleviate the clinical manifestation and severity of the disease and have shown some efficacy. This review presents an updated detailed overview of COVID-19 and the virus, concerning its structure, epidemiology, symptoms and transmission, immune responses, and current interventions, and highlights the potential of TCM. It is anticipated that this review will further add to the understanding of COVID-19 and the virus, hence opening new research perspectives.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Betacoronavirus , COVID-19 , Humans , Medicine, Chinese Traditional , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL